Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector
نویسندگان
چکیده
منابع مشابه
Surfaces with maximal constant mean curvature
In this note we consider asymptotically flat manifolds with non-negative scalar curvature and an inner boundary which is an outermost minimal surface. We show that there exists an upper bound on the mean curvature of a constant mean curvature surface homologous to a subset of the interior boundary components. This bound allows us to find a maximizer for the constant mean curvature of a surface ...
متن کاملThe Mean Curvature Flow Smoothes Lipschitz Submanifolds
The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...
متن کاملConformal Killing graphs with prescribed mean curvature
We prove the existence and uniqueness of graphs with prescribed mean curvature function in a large class of Riemannian manifolds which comprises spaces endowed with a conformal Killing vector field.
متن کاملNew Constant Mean Curvature Surfaces
We use the DPW construction [5] to present three new classes of immersed CMC cylinders, each of which includes surfaces with umbilics. The first class consists of cylinders with one end asymptotic to a Delaunay surface. The second class presents surfaces with a closed planar geodesic. In the third class each surface has a closed curve of points with a common tangent plane. An appendix, by the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1972-0301645-2